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Mathématiques Appliquées de Bordeaux

CEntre des Lasers Intenses et Applications
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Thermodynamic model

Two equations of state: ε1(P, T ) and ε2(P, T )
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Thermodynamic model

Two equations of state: ε1(P, T ) and ε2(P, T )

Mixture zone
Suppose that fluids are locally non miscible
V1 + V2 = Vtot

Optimization of mixture entropy
=⇒ When the mixture is stable

µ1 = µ2 P1 = P2 T1 = T2
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Thermodynamic model

Two equations of state: ε1(P, T ) and ε2(P, T )

Mixture zone

τ

P

Liquid GasMixture

3 convex E.O.S.
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Equilibrium EOS (1/4)

Look for simple waves for the Euler system
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Equilibrium EOS (1/4)

Look for simple waves for the Euler system










∂tρ + ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2 + P ) = 0

∂t(ρE) + ∂x((ρE + P )u) = 0

with E = ε +
1

2
u2

ε, P, ρ are linked with an E.O.S.
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Equilibrium EOS (1/4)

Look for simple waves for the Euler system

Look for self similar solutions

+ Entropy criterion
If P decreases, isentropic regular wave

S = cste
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Equilibrium EOS (1/4)

Look for simple waves for the Euler system

Look for self similar solutions

+ Entropy criterion
If P decreases, isentropic regular wave

If P increases, shock: Rankine–Hugoniot relations






















M =
u2 − u1

τ2 − τ1

M2 = −
p2 − p1

τ2 − τ1

ε2 − ε1 +
1

2
(p2 + p1)(τ2 − τ1) = 0
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Equilibrium EOS (1/4)

Look for simple waves for the Euler system

Look for self similar solutions

+ Entropy criterion
If P decreases, isentropic regular wave

If P increases, shock: Rankine–Hugoniot relations

if the E.O.S if globally convex, existence and
uniqueness of a solution for the Riemann Problem
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Equilibrium EOS (2/4)

Consequences of the phase transition for Hugoniot
Curves
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Equilibrium EOS (2/4)

Consequences of the phase transition for Hugoniot
Curves

τ

P

t

x

σ1

σ2
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Equilibrium EOS (2/4)

Consequences of the phase transition for Hugoniot
Curves

Liquid

P

Mixture

Gas

τ

A

B
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Equilibrium EOS (2/4)

Consequences of the phase transition for Hugoniot
Curves

Liquid

P

Mixture

Gas

τ

A

B
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Equilibrium EOS (2/4)

Consequences of the phase transition for Hugoniot
Curves

Lost the uniqueness of the entropic solution
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Equilibrium EOS (2/4)

Consequences of the phase transition for Hugoniot
Curves

Lost the uniqueness of the entropic solution

Liu (1975) The “ physical” solution is the one with a
wave splitting in B
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Equilibrium EOS (3/4)

Consequences for isentropic waves
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Equilibrium EOS (3/4)

Consequences for isentropic waves

τ

P
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Equilibrium EOS (3/4)

Consequences for isentropic waves

Characteristic curves in point A

liquid A mixture
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Equilibrium EOS (3/4)

Consequences for isentropic waves

Characteristic curves in point A
=⇒ OK

Characteristic curves in point B

mixture gas

B
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Equilibrium EOS (3/4)

Consequences for isentropic waves

Characteristic curves in point A
=⇒ OK

Characteristic curves in point B
=⇒ non regular wave ???
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Equilibrium EOS (4/4)

Non uniqueness for compressive waves
=⇒ difficulties to compute the right solution with
approximate solvers (Jaouen Phd Thesis)

No solution for undercompressive waves
=⇒ Trash
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Out of equilibrium Riemann problem (1/3)

metastable states

τ

P

Liquid

Mixture

metastable state

=⇒ need for a multiphase code
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Out of equilibrium Riemann problem (1/3)

metastable states

A phase transition wave is a self–similar discontinuity
=⇒ Rankine–Hugoniot relations hold























M =
u2 − u1

τ2 − τ1

M2 = −
p2 − p1

τ2 − τ1

ε2 − ε1 +
1

2
(p2 + p1)(τ2 − τ1) = 0
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Out of equilibrium Riemann problem (1/3)

metastable states

A phase transition wave is a self–similar discontinuity
=⇒ Rankine–Hugoniot relations hold























M =
u2 − u1

τ2 − τ1

M2 = −
p2 − p1

τ2 − τ1

ε2 − ε1 +
1

2
(p2 + p1)(τ2 − τ1) = 0

beware! ε1 == E.O.S of the liquid
ε2 == E.O.S of the mixture or the gas
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Out of equilibrium Riemann problem (2/3)

upstream state /∈ the set of the downstream states

τ

P

P0

τ0

detonations

deflagrations
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Out of equilibrium Riemann problem (2/3)

upstream state /∈ the set of the downstream states

τ increases =⇒ deflagration

τ

P

P0

τ0

weak deflagrations

strong deflagrations

CJ

V. Perrier / Workshop on Numerical methods for multi-material fluid flows 2005 – p. 11



Out of equilibrium Riemann problem (2/3)

upstream state /∈ the set of the downstream states

τ increases =⇒ deflagration

No strong deflagrations (Lax characteristic condition)
=⇒ subsonic wave
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Out of equilibrium Riemann problem (2/3)

upstream state /∈ the set of the downstream states

τ increases =⇒ deflagration

No strong deflagrations (Lax characteristic condition)
=⇒ subsonic wave

contact surface

vaporization wave (subsonic)

sonic wave (rarefaction/shock)
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Out of equilibrium Riemann problem (2/3)

upstream state /∈ the set of the downstream states

τ increases =⇒ deflagration

No strong deflagrations (Lax characteristic condition)
=⇒ subsonic wave

entropy growth is ensured for all the downstream states
of weak deflagration
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Out of equilibrium Riemann problem (3/3)

one indeterminate

state 0
?

vaporization
state ?

contact surface

sonic wave

state 0
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Out of equilibrium Riemann problem (3/3)

one indeterminate

A “physical” closure (Lemétayer et al, JCP 2005)

τ

P

M increases

τ?
0

P ?
0
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Out of equilibrium Riemann problem (3/3)

one indeterminate

A “physical” closure (Lemétayer et al, JCP 2005)

... leads to an ill posed problem!!!

P

τ

overheat

downstream states
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Out of equilibrium Riemann problem (3/3)

one indeterminate

A “physical” closure (Lemétayer et al, JCP 2005)

... leads to an ill posed problem!!!

overheat

τof the downstream state

Mixture

pure Gas
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Out of equilibrium Riemann problem (3/3)

one indeterminate

A “physical” closure (Lemétayer et al, JCP 2005)

... leads to an ill posed problem!!!

overheat

τ of the downstream state

Mixture

pure Gas
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Numerical method (Continuous model)

Multiphase model

∂αk

∂t + uI
∂αk

∂x = 0
∂αkρk

∂t + ∂αkρuk

∂x = 0

∂αkρkuk

∂t +
∂αk

(

ρku2
k+pk

)

∂x = pI
∂αk

∂x

∂αkρkEk

∂t +
∂αkuk

(

ρkEk+pk

)

∂x = uIpI
∂αk

∂x

problems
How to choose uI , pI ? modelisation problem
non conservative products
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Numerical method (Continuous model)

Reference : Drew–Passman, Theory of multicomponent
fluids, Applied Math. Sciences, 135, Springer, 1998

Assumptions

1. Location of bubbles, size, micro-scale details of the flow
are unknown

2. Given a set of initial and boundary condition, we
consider one experiment as a realisation of this flow.

3. What we expect to observe/compute is an
ensemble average of these experiments
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Numerical method (Continuous model)

Reference : Drew–Passman, Theory of multicomponent
fluids, Applied Math. Sciences, 135, Springer, 1998

1. Equations for each phase
Euler

χk (∂tUk + ∂xFk(Uk)) = 0

+ Topological equation for the interface

∂tχk + σ∂xχk = 0
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Numerical method (Continuous model)

Reference : Drew–Passman, Theory of multicomponent
fluids, Applied Math. Sciences, 135, Springer, 1998

1. Equations for each phase
Euler + Topological equation for the interface

2. Average

∂tαkρk + ∇ · (αkρkuk) = E (ρ (uk − σ) · ∇χk)

∂tαkρkuk + ∇ · (αkρkuk ⊗ uk + αkPk)

= E ((ρkuk(uk − σ) + Pk) · ∇χk)

∂tαkρkEk + ∇ · (αkρkEkuk + αkPkuk)

= E ((ρkEk(uk − σ) + Pkuk) · ∇χk)

∂tαk + E (σ · ∂xχk) = 0
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Numerical method (Continuous model)

Reference : Drew–Passman, Theory of multicomponent
fluids, Applied Math. Sciences, 135, Springer, 1998

1. Equations for each phase
Euler + Topological equation for the interface

2. Average

3. Modelling

E (Pk∇χk) = PI∇αk

E ((Pku) · ∇χk) = PIuI∇αk

E (σ · ∇χk) = uI∇αk
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Numerical method (Continuous model)

Reference : Drew–Passman, Theory of multicomponent
fluids, Applied Math. Sciences, 135, Springer, 1998

1. Equations for each phase
Euler + Topological equation for the interface

2. Average
Closure Problems

3. Modelling
Non conservative Products+ Closure Pbs
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Numerical method

tn

xi−1/2 xi+1/2

tn+1

a Cell of the mesh. We know (α, ρ, u, P ) in each cell
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Numerical method

tn

xi−1/2 xi+1/2

ΣΣ ΣΣ
′

Σ
′′

Σ

tn+1

cut the cell into subcells, taking care of
∫

∆x
X = α

do the same for the neighbours cells
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Numerical method

tn

xi−1/2 xi+1/2

ΣΣ ΣΣ
′

Σ
′′

Σ

tn+1

Evolution in time
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Numerical method

Averaging procedure

Probability in the boundary of the cell:

Pi+1/2(Σ1, Σ1) = min(α
(1)
i , α

(1)
i+1)

Pi+1/2(Σ1, Σ2) = max(0, α
(1)
i − α

(1)
i+1)

see Abgrall/Saurel, JCP, 2003
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Numerical method

extension to reactive flux

Total vaporization wave

σ

u?

x

t

liquidgas

gas

=⇒ replace the contact discontinuity by the vaporization
wave
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Numerical method

extension to reactive flux

Partial vaporization wave

σ

u?

x

t

liquidgas

mixture
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Numerical method

extension to reactive flux

Partial vaporization wave
u?

x

t

liquidgas

σ

=⇒ Average of total and partial vaporization wave
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Liquefaction

double shock

Gas Liquid

P = 104PaP = 104Pa

ρ = 0.5 kg.m−3 ρ = 3 kg.m−3

u = 0 m.s−1 u = −60 m.s−1
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Liquefaction

Density
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Liquefaction

Velocity
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Liquefaction

Pressure
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Liquefaction

Liquid Density
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Vaporisation

Shock tube

Gas Liquid

P = 10
9PaP = 10

5Pa

ρ = 0.1kg.m−3 ρ = 3kg.m−3

u = 0 u = 0
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Vaporisation

Density
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Vaporisation

Velocity
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Vaporisation

Pressure
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Conclusion

contruction of a solution for the Riemann problem with
phase transition

entropy growth condition
Lax characteristic criterion
continuity of the intermediates states

easy computation thanks for the discrete equation
method (right and left states of the Riemann problems
are always pure fluids)
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...

Thank you!
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